**Never look directly at the Sun without proper eye protection. You can seriously hurt your eyes and even go blind.

Upgraded Pinhole Projector Using a Box

This type of pinhole projector works on the same principle as a basic pinhole projector. However, the box makes this projector much sturdier and easier to set on a surface. And it only requires a few extra items to construct.

You Need:

- a long cardboard box or tube
- scissors
- duct tape
- aluminum foil
- a pin or a thumbtack
- a sharp knife or paper cutter
- a sheet of white paper

What to Do:

- 1. Cut a rectangular hole at the end of the box. You can tape 2 boxes together to make a long box. The longer the box, the larger the projected image.
- 2. Using the scissors, cut out a piece of the aluminum foil slightly larger than the rectangular hole. Make sure the foil is completely flat and not crinkled.
- 3. Tape the foil over the rectangular hole in the box.
- 4. Use the pin to poke a tiny hole in the center of the foil.
- 5. Tape the sheet of paper on the inside of the other end of the box.
- 6. Stand with your back toward the Sun. Place the box over your head with the pinhole towards the Sun. Adjust your position until you see a small projection, a negative image, of the eclipsed Sun on the paper inside the box.

**Never look directly at the Sun without proper eye protection. You can seriously hurt your eyes and even go blind.

Finding the Sun or Moon's Diameter with your Pinhole Projector

• Measure accurately and record the distance between the pinhole and the white paper or screen.

The distance between my image and the pinhole camera was _____ cm.

• Measure accurately and record the diameter of your images of the Sun or Moon (using the same units).

The diameter of my Sun or Moon image is _____ cm.

• The diameters of the moon and the cut-out semi-circle are in the same proportion as the distances between your eye and the moon and between your eye and the window.

 $Diameter\ of\ Sun\ or\ Moon = \frac{Distance\ from\ Earth\ of\ Sun\ or\ Moon \times Diameter\ of\ Image}{Distance\ to\ Screen\ from\ Pinhole}$

- The distance of the Earth from the Sun is 149,600,000 km
- The distance of the Earth from the Moon is 384,400 km
- \bullet You will need to make sure that you change all your distance measurements to the same units, e.g. meters. (Remember there are 100 cm in 1m and 1000 m in 1km.)

Diameter of Sun or Moon = _____

Things to think about:

- How many times bigger is the Sun than the Moon?
- Why do you think that they appear to be about the same size to us?